metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(6-Methyl-2-pyridylmethyl)(2-pyridylmethyl)amine][(2-pyridylmethyl)amine]copper(II) bis(perchlorate)

Ray J. Butcher,* Yohannes T. Tesema, Teshome B. Yisgedu and Yilma Gultneh

Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: rbutcher99@yahoo.com

Received 21 November 2007; accepted 24 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.054; wR factor = 0.145; data-to-parameter ratio = 13.9.

The title compound, $[Cu(C_6H_8N_2)(C_{13}H_{15}N_3)](ClO_4)_2$, is a mixed ligand complex with the Cu^{II} atom coordinated by (6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine, acting as a tridentate ligand, and 2-(2-aminomethyl)pyridine, as a bidentate ligand, leading to an N₅ square-pyramidal geometry. The amine H atoms are involved in hydrogen bonding to the perchlorate O atoms and there are extensive but weak intermolecular C-H···O interactions in the crystal structure. The perchlorate ions are each disordered over two positions, with site occupancies of 0.601 (8):0.399 (8) and 0.659 (11):0.341 (11).

Related literature

For related literature, see: Cho *et al.* (2006); Gultneh *et al.* (2003); Hetterscheid *et al.* (2004); Mizuno *et al.* (2003); Ohtsu *et al.* (2001); Oki *et al.* (1990); Addison *et al.* (1984).

Experimental

Crystal data

 $[Cu(C_6H_8N_2)(C_{13}H_{15}N_3)](ClO_4)_2$ $M_r = 583.86$ Monoclinic, $P2_1/n$ a = 9.3178 (10) Åb = 13.9691 (19) Åc = 19.223 (3) Å $\beta = 99.931 (11)^{\circ}$ $V = 2464.6 (6) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker P4S diffractometer Absorption correction: ψ -scan (North *et al.*, 1968) $T_{min} = 0.444, T_{max} = 0.505$ (expected range = 0.722–0.821) 5832 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.145$ S = 1.025494 reflections 394 parameters 5494 independent reflections 3410 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ 3 standard reflections every 97 reflections

 $\mu = 1.16 \text{ mm}^{-1}$

T = 293 (2) K

 $0.45 \times 0.22 \times 0.17 \text{ mm}$

118 restraints

intensity decay: < 2%

H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.40 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H2 B ···O12 A	0.90	2.21	3.080 (17)	161
$N2-H2B\cdots O13$	0.90	2.27	3.103 (12)	154
$N2-H2C\cdots O24$	0.90	2.22	3.064 (9)	157
$N2-H2C\cdots O22A$	0.90	2.27	3.158 (19)	169
$N2-H2C\cdots O21$	0.90	2.64	3.374 (17)	139
$N-H0A\cdotsO12^{i}$	0.91	2.44	3.301 (10)	158
$N-H0A\cdotsO11A^{i}$	0.91	2.40	3.291 (19)	165
$C3-H3A\cdots O23^{ii}$	0.93	2.54	3.456 (10)	169
$C4-H4A\cdots O12^{iii}$	0.93	2.45	3.374 (10)	172
$C1A - H1AA \cdots O14A$	0.93	2.57	3.438 (18)	156
$C2A - H2AA \cdots O22^{iv}$	0.93	2.56	3.475 (13)	167
$C2A - H2AA \cdots O22A^{iv}$	0.93	2.46	3.199 (14)	136
$C6A - H6AB \cdot \cdot \cdot O22^{v}$	0.97	2.35	3.294 (10)	164
$C11B - H11B \cdots O14A$	0.96	2.32	3.180 (12)	148
$C6B - H6BA \cdots O22^{v}$	0.97	2.53	3.433 (10)	154
$C6B - H6BA \cdots O23A^{v}$	0.97	2.47	3.433 (17)	172
$C6B - H6BB \cdot \cdot \cdot O23^{vi}$	0.97	2.54	3.375 (10)	144

Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 1, -z; (iii) -x + 1, -y + 1, -z; (iv) -x + 1, -y + 2, -z; (v) -x + 2, -y + 2, -z; (vi) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *XSCANS* (Bruker, 1997); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory, Washington DC, USA, for access to their diffractometers.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2224).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cho, J., Furutachi, H., Fujinami, S., Tosha, T., Ohtsu, H., Ikeda, O., Suzuki, A., Nomura, M., Uruga, T., Tanida, H., Kawai, T., Tanaka, K., Kitagawa, T. & Suzuki, M. (2006). *Inorg. Chem.* **45**, 2873–2885. Gultneh, Y., Yisgedu, T. B., Tesema, Y. T. & Butcher, R. J. (2003). *Inorg. Chem.*
- 42, 1857-1867.
- Hetterscheid, D. G. H., Smits, J. M. M. & Bruin, B. (2004). Organometallics, 23, 4236-4246.
- Mizuno, M., Hayashi, H., Fujinami, S., Furutachi, H., Nagatomo, S., Otakes, S., Uozumi, K., Suzuki, M. & Kitagawa, T. (2003). Inorg. Chem. 42, 8534-8544.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

- Ohtsu, H., Itoh, S., Nagamtomo, S., Kitagawa, T., Ogo, S., Watanabe, Y. & Fukuzumi, S. (2001). Inorg. Chem. 40, 3200-3207.
- Oki, A. R., Glerup, J. & Hodgson, D. J. (1990). Inorg. Chem. 29, 2435-2441. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2008). E64, m74-m75 [doi:10.1107/S1600536807062952]

[(6-Methyl-2-pyridylmethyl)(2-pyridylmethyl)amine][(2-pyridylmethyl)amine]copper(II) bis(perchlorate)

R. J. Butcher, Y. T. Tesema, T. B. Yisgedu and Y. Gultneh

Comment

The geometry around the Cu^{II} ion in (I), Fig. 1, is best described as a distorted square-pyramid ($\tau = 0.224$; Addison *et al.*, 1984), with an amine-N2 atom and three pyridine-N atoms (N1A, N1B, and N1) defining the basal plane. The Cu—N_{pyridyl} bond distances are in the range of 1.993 (3)–2.039 (3) Å, and a Cu—N_{amine} bond distance of 1.998 (3) Å. The axial position is occupied by the amine-N atom of the tridentate (6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine ligand with a bond distance of 2.195 (3) Å consistent with a Jahn–Teller elongation. In (I), the Cu—N_{pyridyl} and Cu—N_{amine} bond distances of 1.998 (3) Å, respectively, are shorter for the 2-(2-aminomethyl)pyridine ligand. The amine H atoms are involved in hydrogen bonding to the perchlorate-O atoms and there are extensive but weak intermolecular C—H···O interactions in the crystal structure (Fig. 2 & Table 1).

Experimental

Complex (I) was synthesized by reacting one equivalent each of the ligands (6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine and 2-(2-aminomethyl)pyridine with $Cu(ClO_4)_2$ ·6H₂O and triethylamine in methanol solution. After stirring the mixture for 12 h, the resulting precipitate was isolated and re-dissolved in acetonitrile solution. Dark-blue crystals suitable for X-ray diffraction analysis were obtained by layering this solution with diethyl ether.

Refinement

The two perchlorate anions are disordered over two conformations with occupancy factors of 0.601 (8), 0.399 (8) for the Cl1-perchlorate anion, and 0.659 (11), 0.341 (11) for the Cl2-perchlorate. Each of the perchlorates was constrained to adopt a tetrahedral geometry. The H atoms were included in the riding model approximation with N—H = 0.90–0.91 Å and C—H = 0.93–0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C, N)$ (1.5 $U_{eq}(C)$ for methyl-H).

Figures

Fig. 1. The molecular structure of (I) showing the atomic numbering scheme and displacement ellipsoids drawn at the 20% probabilty level.

Fig. 2. The packing arrangement in (I) viewed down the *a* axis showing the N—H···O and C—H···O interactions as dashed bonds.

[(6-Methyl-2-pyridylmethyl)(2-pyridylmethyl)amine][(2- pyridylmethyl)amine]copper(II) bis(perchlorate)

 $F_{000} = 1196$

 $\theta = 5.1-12.5^{\circ}$ $\mu = 1.16 \text{ mm}^{-1}$ T = 293 (2) KNeedle, dark blue $0.45 \times 0.22 \times 0.17 \text{ mm}$

 $D_{\rm x} = 1.574 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

Cell parameters from 40 reflections

Crystal data

$[Cu(C_6H_8N_2)(C_{13}H_{15}N_3)](ClO_4)_2$ $M_r = 583.86$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 9.3178 (10) Å
b = 13.9691 (19) Å
c = 19.223 (3) Å
$\beta = 99.931 \ (11)^{\circ}$
V = 2464.6 (6) Å ³
Z = 4

Data collection

Bruker P4S diffractometer	$R_{\rm int} = 0.023$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.6^{\circ}$
T = 293(2) K	$h = 0 \rightarrow 10$
ω scans	$k = 0 \rightarrow 18$
Absorption correction: empirical (using intensity measurements) ψ-scan (North <i>et al.</i> , 1968)	$l = -24 \rightarrow 24$
$T_{\min} = 0.444, \ T_{\max} = 0.505$	3 standard reflections
5832 measured reflections	every 97 reflections
5494 independent reflections	intensity decay: <2%
3410 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.145$	$w = 1/[\sigma^2(F_0^2) + (0.0609P)^2 + 0.9236P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
5494 reflections	$\Delta \rho_{max} = 0.40 \text{ e} \text{ Å}^{-3}$

394 parameters

 $\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$

118 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cu	0.82061 (5)	0.75715 (3)	0.13019 (2)	0.05120 (17)	
Cl1	0.31446 (13)	0.67766 (9)	0.06898 (6)	0.0720 (3)	
Cl2	0.79982 (12)	0.81545 (7)	-0.12730 (6)	0.0641 (3)	
O11	0.3166 (9)	0.7331 (9)	0.1286 (5)	0.152 (4)	0.601 (8)
012	0.1675 (7)	0.6764 (9)	0.0381 (6)	0.153 (4)	0.601 (8)
O13	0.3873 (12)	0.7307 (8)	0.0218 (5)	0.159 (4)	0.601 (8)
O14	0.3776 (16)	0.5943 (7)	0.0733 (8)	0.209 (5)	0.601 (8)
O11A	0.256 (2)	0.7538 (10)	0.0342 (10)	0.183 (6)	0.399 (8)
O12A	0.4019 (17)	0.6278 (13)	0.0278 (9)	0.175 (5)	0.399 (8)
O13A	0.2181 (16)	0.6067 (10)	0.0823 (9)	0.155 (5)	0.399 (8)
O14A	0.4133 (19)	0.6940 (15)	0.1287 (7)	0.194 (7)	0.399 (8)
O21	0.9137 (13)	0.7800 (12)	-0.0783 (7)	0.115 (4)	0.659 (11)
O22	0.7988 (12)	0.9139 (5)	-0.1336 (7)	0.135 (4)	0.659 (11)
O23	0.7929 (11)	0.7683 (7)	-0.1931 (3)	0.111 (3)	0.659 (11)
O24	0.6647 (8)	0.7921 (7)	-0.1036 (5)	0.124 (3)	0.659 (11)
O21A	0.941 (2)	0.780 (2)	-0.0915 (13)	0.114 (7)	0.341 (11)
O22A	0.735 (2)	0.8536 (14)	-0.0741 (7)	0.130 (5)	0.341 (11)
O23A	0.840 (3)	0.8895 (13)	-0.1687 (11)	0.152 (8)	0.341 (11)
O24A	0.728 (2)	0.7459 (10)	-0.1643 (11)	0.128 (6)	0.341 (11)
N1	0.9081 (4)	0.6274 (2)	0.14801 (18)	0.0582 (8)	
N2	0.7204 (4)	0.6948 (3)	0.04142 (19)	0.0711 (10)	
H2B	0.6256	0.6870	0.0439	0.085*	
H2C	0.7261	0.7336	0.0046	0.085*	
Ν	1.0124 (4)	0.8442 (3)	0.1207 (2)	0.0676 (10)	
H0A	1.0778	0.8088	0.1015	0.081*	
N1A	0.7231 (4)	0.8851 (2)	0.10460 (16)	0.0528 (8)	
C1	0.9991 (6)	0.5995 (4)	0.2061 (3)	0.0838 (15)	
H1A	1.0200	0.6419	0.2438	0.101*	
C2	1.0625 (6)	0.5108 (4)	0.2119 (3)	0.0928 (17)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H2A	1.1239	0.4928	0.2532	0.111*
C3	1.0343 (6)	0.4493 (4)	0.1563 (3)	0.0893 (16)
H3A	1.0773	0.3890	0.1591	0.107*
C4	0.9423 (5)	0.4767 (3)	0.0963 (3)	0.0747 (13)
H4A	0.9213	0.4352	0.0581	0.090*
C5	0.8813 (5)	0.5668 (3)	0.0934 (2)	0.0586 (10)
C6	0.7826 (7)	0.6032 (4)	0.0292 (3)	0.0898 (16)
H6A	0.8371	0.6090	-0.0093	0.108*
H6B	0.7048	0.5574	0.0151	0.108*
C1A	0.5863 (5)	0.9080 (3)	0.1121 (2)	0.0678 (12)
H1AA	0.5272	0.8609	0.1264	0.081*
C2A	0.5311 (6)	0.9987 (4)	0.0992 (3)	0.0824 (15)
H2AA	0.4362	1.0128	0.1048	0.099*
C3A	0.6177 (7)	1.0677 (4)	0.0780 (3)	0.0912 (17)
H3AA	0.5820	1.1294	0.0688	0.109*
C4A	0.7575 (6)	1.0460 (3)	0.0703 (2)	0.0750 (13)
H4AA	0.8179	1.0927	0.0565	0.090*
C5A	0.8077 (5)	0.9526 (3)	0.0835 (2)	0.0591 (10)
C6A	0.9570 (5)	0.9222 (3)	0.0733 (2)	0.0691 (12)
H6AA	0.9535	0.9019	0.0248	0.083*
H6AB	1.0228	0.9764	0.0819	0.083*
N1B	0.8682 (4)	0.8030 (2)	0.23229 (17)	0.0591 (9)
C1B	0.7839 (6)	0.7840 (4)	0.2815 (3)	0.0811 (16)
C11B	0.6648 (6)	0.7120 (5)	0.2627 (3)	0.105 (2)
H11A	0.7063	0.6510	0.2546	0.158*
H11B	0.6007	0.7322	0.2207	0.158*
H11C	0.6108	0.7066	0.3008	0.158*
C2B	0.8124 (8)	0.8284 (6)	0.3461 (3)	0.120 (3)
H2BA	0.7582	0.8131	0.3808	0.145*
C3B	0.9221 (11)	0.8958 (7)	0.3591 (4)	0.146 (4)
H3BA	0.9395	0.9281	0.4020	0.175*
C4B	1.0036 (8)	0.9143 (4)	0.3092 (4)	0.116 (3)
H4BA	1.0768	0.9602	0.3174	0.139*
C5B	0.9783 (6)	0.8648 (3)	0.2458 (3)	0.0728 (14)
C6B	1.0765 (6)	0.8746 (4)	0.1921 (3)	0.0904 (17)
H6BA	1.1056	0.9411	0.1904	0.108*
H6BB	1.1638	0.8372	0.2076	0.108*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.0506 (3)	0.0457 (3)	0.0560 (3)	0.0023 (2)	0.0057 (2)	-0.0030 (2)
Cl1	0.0659 (7)	0.0798 (8)	0.0700 (7)	-0.0029 (6)	0.0109 (6)	-0.0066 (6)
Cl2	0.0725 (7)	0.0507 (6)	0.0661 (6)	0.0027 (5)	0.0036 (5)	-0.0019 (5)
011	0.095 (6)	0.257 (12)	0.103 (6)	0.002 (7)	0.011 (5)	-0.087(7)
012	0.062 (4)	0.198 (10)	0.191 (9)	-0.012 (5)	-0.003 (5)	-0.065 (8)
O13	0.164 (8)	0.168 (8)	0.166 (7)	-0.005 (7)	0.083 (7)	0.047 (7)
O14	0.248 (11)	0.127 (7)	0.258 (12)	0.083 (8)	0.063 (10)	0.051 (8)

O11A	0.175 (12)	0.153 (11)	0.226 (12)	0.070 (9)	0.045 (11)	0.080 (9)
O12A	0.165 (9)	0.185 (12)	0.205 (12)	0.053 (10)	0.115 (9)	0.029 (11)
O13A	0.127 (10)	0.128 (10)	0.227 (12)	-0.046 (8)	0.076 (9)	0.015 (9)
O14A	0.164 (13)	0.270 (17)	0.116 (10)	-0.105 (13)	-0.059 (10)	0.006 (11)
O21	0.113 (7)	0.134 (7)	0.084 (5)	0.029 (6)	-0.019 (5)	0.004 (5)
O22	0.132 (7)	0.053 (4)	0.210 (11)	-0.012 (4)	0.000(7)	0.003 (5)
O23	0.129 (7)	0.125 (7)	0.073 (4)	0.017 (5)	0.001 (4)	-0.024 (4)
O24	0.098 (5)	0.107 (6)	0.175 (8)	-0.004 (4)	0.052 (5)	0.021 (5)
O21A	0.072 (9)	0.133 (12)	0.122 (14)	0.042 (9)	-0.021 (9)	-0.038 (11)
O22A	0.128 (11)	0.127 (11)	0.140 (10)	0.051 (9)	0.042 (8)	-0.022 (9)
O23A	0.200 (16)	0.091 (12)	0.168 (16)	-0.026 (11)	0.037 (12)	0.051 (11)
O24A	0.111 (11)	0.092 (8)	0.167 (13)	-0.025 (8)	-0.019 (9)	-0.045 (9)
N1	0.058 (2)	0.0481 (19)	0.067 (2)	0.0039 (16)	0.0069 (17)	-0.0052 (16)
N2	0.075 (2)	0.071 (2)	0.063 (2)	0.005 (2)	-0.0003 (19)	-0.0083 (19)
Ν	0.051 (2)	0.057 (2)	0.097 (3)	0.0004 (17)	0.020 (2)	-0.001 (2)
N1A	0.051 (2)	0.0505 (18)	0.0553 (19)	0.0033 (16)	0.0048 (15)	-0.0013 (15)
C1	0.084 (4)	0.069 (3)	0.088 (3)	0.026 (3)	-0.015 (3)	-0.013 (3)
C2	0.092 (4)	0.077 (4)	0.100 (4)	0.029 (3)	-0.009 (3)	0.001 (3)
C3	0.082 (4)	0.053 (3)	0.136 (5)	0.014 (3)	0.027 (4)	0.001 (3)
C4	0.072 (3)	0.055 (3)	0.099 (4)	0.000 (2)	0.023 (3)	-0.019 (3)
C5	0.054 (2)	0.051 (2)	0.072 (3)	-0.0076 (19)	0.016 (2)	-0.010 (2)
C6	0.115 (4)	0.071 (3)	0.077 (3)	0.012 (3)	0.001 (3)	-0.020 (3)
C1A	0.061 (3)	0.070 (3)	0.069 (3)	0.014 (2)	0.002 (2)	-0.001 (2)
C2A	0.076 (3)	0.086 (4)	0.080 (3)	0.032 (3)	-0.001 (3)	-0.004 (3)
C3A	0.120 (5)	0.061 (3)	0.085 (4)	0.029 (3)	-0.004 (3)	-0.001 (3)
C4A	0.100 (4)	0.054 (3)	0.066 (3)	0.002 (3)	0.000 (3)	0.005 (2)
C5A	0.074 (3)	0.053 (2)	0.047 (2)	0.001 (2)	-0.001 (2)	-0.0026 (18)
C6A	0.069 (3)	0.068 (3)	0.073 (3)	-0.013 (2)	0.017 (2)	0.001 (2)
N1B	0.065 (2)	0.054 (2)	0.056 (2)	0.0133 (18)	0.0019 (17)	-0.0060 (16)
C1B	0.082 (4)	0.100 (4)	0.060 (3)	0.047 (3)	0.008 (3)	0.001 (3)
C11B	0.087 (4)	0.142 (6)	0.095 (4)	0.010 (4)	0.037 (3)	0.025 (4)
C2B	0.125 (6)	0.174 (8)	0.061 (4)	0.084 (6)	0.012 (4)	-0.008 (4)
C3B	0.157 (8)	0.168 (8)	0.093 (5)	0.090 (7)	-0.029 (5)	-0.067 (6)
C4B	0.114 (5)	0.085 (4)	0.125 (5)	0.029 (4)	-0.048 (4)	-0.044 (4)
C5B	0.077 (3)	0.054 (3)	0.076 (3)	0.020 (2)	-0.021 (3)	-0.010 (2)
C6B	0.066 (3)	0.079 (4)	0.113 (4)	-0.016 (3)	-0.019 (3)	0.022 (3)

Geometric parameters (Å, °)

Cu—N1	1.993 (3)	C3—C4	1.367 (7)
Cu—N2	1.998 (3)	С3—НЗА	0.9300
Cu—N1A	2.027 (3)	C4—C5	1.378 (6)
Cu—N1B	2.039 (3)	C4—H4A	0.9300
Cu—N	2.195 (3)	C5—C6	1.496 (7)
Cl1—O14	1.301 (9)	С6—Н6А	0.9700
Cl1—O11A	1.321 (10)	С6—Н6В	0.9700
Cl1—O14A	1.362 (10)	C1A—C2A	1.374 (6)
Cl1—O11	1.381 (7)	C1A—H1AA	0.9300
Cl1—O13A	1.391 (9)	C2A—C3A	1.364 (8)

Cl1—O12	1.396 (7)	С2А—Н2АА	0.9300
Cl1—O12A	1.414 (11)	C3A—C4A	1.370 (7)
Cl1—O13	1.430 (7)	СЗА—НЗАА	0.9300
Cl2—O24A	1.315 (11)	C4A—C5A	1.394 (6)
Cl2—O22A	1.380 (10)	С4А—Н4АА	0.9300
Cl2—O22	1.381 (7)	C5A—C6A	1.499 (6)
Cl2—O21	1.383 (8)	С6А—Н6АА	0.9700
Cl2—O23A	1.396 (12)	С6А—Н6АВ	0.9700
Cl2—O23	1.417 (6)	N1B—C5B	1.332 (6)
Cl2—O24	1.448 (6)	N1B—C1B	1.356 (6)
Cl2—O21A	1.461 (13)	C1B—C2B	1.371 (8)
N1—C5	1.337 (5)	C1B—C11B	1.495 (8)
N1—C1	1.337 (6)	C11B—H11A	0.9600
N2—C6	1.440 (6)	C11B—H11B	0.9600
N2—H2B	0.9000	C11B—H11C	0.9600
N2—H2C	0.9000	C2B—C3B	1.380 (11)
N—C6A	1.456 (6)	C2B—H2BA	0.9300
N—C6B	1.462 (6)	C3B—C4B	1.347 (11)
N—H0A	0.9100	СЗВ—НЗВА	0.9300
N1A—C5A	1.336 (5)	C4B—C5B	1.386 (7)
N1A—C1A	1.346 (5)	C4B—H4BA	0.9300
C1—C2	1.369 (7)	C5B—C6B	1.499 (7)
C1—H1A	0.9300	С6В—Н6ВА	0.9700
C2—C3	1.361 (7)	C6B—H6BB	0.9700
C2—H2A	0.9300		
N1—Cu—N2	82.37 (15)	C3—C4—C5	118.9 (5)
N1—Cu—N1A	175.43 (13)	C3—C4—H4A	120.5
N2—Cu—N1A	93.06 (14)	С5—С4—Н4А	120.5
N1—Cu—N1B	96.05 (14)	N1C5C4	121.8 (4)
N2—Cu—N1B	161.97 (16)	N1—C5—C6	116.0 (4)
N1A—Cu—N1B	88.33 (13)	C4—C5—C6	122.3 (4)
N1—Cu—N	101.74 (14)	N2—C6—C5	112.0 (4)
N2—Cu—N	115.93 (16)	N2—C6—H6A	109.2
N1A—Cu—N	80.11 (13)	С5—С6—Н6А	109.2
N1B—Cu—N	82.03 (15)	N2—C6—H6B	109.2
O11A-Cl1-O14A	116.7 (11)	С5—С6—Н6В	109.2
O14—Cl1—O11	120.5 (8)	Н6А—С6—Н6В	107.9
O11A-Cl1-O13A	116.5 (10)	N1A—C1A—C2A	122.2 (5)
O14A-Cl1-O13A	109.2 (9)	N1A—C1A—H1AA	118.9
O14—Cl1—O12	114.6 (8)	C2A—C1A—H1AA	118.9
O11-Cl1-O12	103.5 (5)	C3A—C2A—C1A	118.9 (5)
O11A-Cl1-O12A	109.8 (10)	C3A—C2A—H2AA	120.6
O14A—Cl1—O12A	100.6 (10)	C1A—C2A—H2AA	120.6
O13A—Cl1—O12A	101.9 (9)	C2A—C3A—C4A	119.9 (5)
O12—Cl1—O12A	111.9 (9)	С2А—С3А—НЗАА	120.1
O14—Cl1—O13	104.2 (7)	С4А—С3А—НЗАА	120.1
O11—Cl1—O13	107.2 (7)	C3A—C4A—C5A	118.9 (5)
O12—Cl1—O13	105.9 (7)	СЗА—С4А—Н4АА	120.6
O24A—Cl2—O22A	116.2 (10)	С5А—С4А—Н4АА	120.6

O24A—Cl2—O21	111.1 (12)	N1A—C5A—C4A	121.2 (4)
O22—Cl2—O21	114.2 (7)	N1A—C5A—C6A	116.7 (4)
O24A—Cl2—O23A	113.6 (11)	C4A—C5A—C6A	122.0 (4)
O22A—Cl2—O23A	109.3 (9)	N—C6A—C5A	111.5 (4)
O22—Cl2—O23	112.7 (6)	N—C6A—H6AA	109.3
O21—Cl2—O23	110.6 (7)	С5А—С6А—Н6АА	109.3
O22—Cl2—O24	105.0 (5)	N—C6A—H6AB	109.3
O21—Cl2—O24	108.2 (7)	С5А—С6А—Н6АВ	109.3
O23—Cl2—O24	105.5 (5)	Н6АА—С6А—Н6АВ	108.0
O24A—Cl2—O21A	109.3 (12)	C5B—N1B—C1B	120.6 (4)
O22A—Cl2—O21A	104.7 (11)	C5B—N1B—Cu	115.1 (3)
O23A—Cl2—O21A	102.4 (12)	C1B—N1B—Cu	123.7 (3)
C5—N1—C1	118.4 (4)	N1B—C1B—C2B	119.9 (6)
C5—N1—Cu	115.2 (3)	N1B-C1B-C11B	117.3 (4)
C1—N1—Cu	126.1 (3)	C2B-C1B-C11B	122.8 (6)
C6—N2—Cu	112.6 (3)	C1B—C11B—H11A	109.5
C6—N2—H2B	109.1	C1B—C11B—H11B	109.5
Cu—N2—H2B	109.1	H11A—C11B—H11B	109.5
C6—N2—H2C	109.1	C1B—C11B—H11C	109.5
Cu—N2—H2C	109.1	H11A—C11B—H11C	109.5
H2B—N2—H2C	107.8	H11B—C11B—H11C	109.5
C6A—N—C6B	114.4 (4)	C1B—C2B—C3B	119.6 (7)
C6A—N—Cu	105.1 (3)	C1B—C2B—H2BA	120.2
C6B—N—Cu	106.8 (3)	C3B—C2B—H2BA	120.2
C6A—N—H0A	110.1	C4B—C3B—C2B	119.5 (7)
C6B—N—H0A	110.1	С4В—С3В—Н3ВА	120.3
Cu—N—H0A	110.1	С2В—С3В—Н3ВА	120.3
C5A—N1A—C1A	118.9 (4)	C3B—C4B—C5B	119.9 (7)
C5A—N1A—Cu	115.6 (3)	C3B—C4B—H4BA	120.0
C1A—N1A—Cu	125.3 (3)	C5B—C4B—H4BA	120.0
N1—C1—C2	122.3 (5)	N1B-C5B-C4B	120.2 (6)
N1—C1—H1A	118.9	N1B—C5B—C6B	117.8 (4)
C2—C1—H1A	118.9	C4B—C5B—C6B	121.9 (6)
C3—C2—C1	119.0 (5)	N—C6B—C5B	114.9 (4)
C3—C2—H2A	120.5	N—C6B—H6BA	108.5
C1—C2—H2A	120.5	C5B—C6B—H6BA	108.5
C2—C3—C4	119.6 (5)	N—C6B—H6BB	108.5
С2—С3—НЗА	120.2	C5B—C6B—H6BB	108.5
С4—С3—Н3А	120.2	H6BA—C6B—H6BB	107.5
N2—Cu—N1—C5	9.1 (3)	C5A—N1A—C1A—C2A	-0.4 (6)
N1A—Cu—N1—C5	7.6 (19)	Cu—N1A—C1A—C2A	174.5 (3)
N1B—Cu—N1—C5	171.0 (3)	N1A—C1A—C2A—C3A	0.1 (7)
N-Cu-N1-C5	-105.9 (3)	C1A—C2A—C3A—C4A	-0.4 (8)
N2—Cu—N1—C1	-177.1 (4)	C2A—C3A—C4A—C5A	0.9 (7)
N1A—Cu—N1—C1	-179 (36)	C1A—N1A—C5A—C4A	1.0 (6)
N1B—Cu—N1—C1	-15.1 (4)	Cu—N1A—C5A—C4A	-174.4 (3)
N—Cu—N1—C1	67.9 (4)	C1A—N1A—C5A—C6A	-177.6 (4)
N1—Cu—N2—C6	-12.6 (4)	Cu—N1A—C5A—C6A	7.0 (4)
N1A—Cu—N2—C6	167.3 (4)	C3A—C4A—C5A—N1A	-1.2 (7)

N1B—Cu—N2—C6	-98.7 (6)	C3A—C4A—C5A—C6A	177.3 (4)
N—Cu—N2—C6	86.8 (4)	C6B—N—C6A—C5A	-81.9 (5)
N1—Cu—N—C6A	150.8 (3)	Cu—N—C6A—C5A	34.9 (4)
N2—Cu—N—C6A	63.7 (3)	N1A—C5A—C6A—N	-30.2 (5)
N1A—Cu—N—C6A	-24.9 (3)	C4A—C5A—C6A—N	151.2 (4)
N1B—Cu—N—C6A	-114.6 (3)	N1—Cu—N1B—C5B	105.0 (3)
N1—Cu—N—C6B	-87.2 (3)	N2—Cu—N1B—C5B	-171.0 (4)
N2—Cu—N—C6B	-174.4 (3)	N1A—Cu—N1B—C5B	-76.3 (3)
N1A—Cu—N—C6B	97.0 (3)	N—Cu—N1B—C5B	4.0 (3)
N1B—Cu—N—C6B	7.3 (3)	N1—Cu—N1B—C1B	-84.0 (4)
N1—Cu—N1A—C5A	-103.9 (17)	N2—Cu—N1B—C1B	0.0 (7)
N2—Cu—N1A—C5A	-105.4 (3)	N1A—Cu—N1B—C1B	94.7 (3)
N1B—Cu—N1A—C5A	92.6 (3)	N—Cu—N1B—C1B	174.9 (4)
N—Cu—N1A—C5A	10.4 (3)	C5B—N1B—C1B—C2B	-0.4 (7)
N1—Cu—N1A—C1A	81.0 (18)	Cu—N1B—C1B—C2B	-170.9 (4)
N2—Cu—N1A—C1A	79.6 (3)	C5B-N1B-C1B-C11B	-178.6 (4)
N1B—Cu—N1A—C1A	-82.4 (3)	Cu—N1B—C1B—C11B	10.9 (6)
N—Cu—N1A—C1A	-164.6 (3)	N1B-C1B-C2B-C3B	3.4 (9)
C5—N1—C1—C2	-1.5 (8)	C11B—C1B—C2B—C3B	-178.5 (6)
Cu—N1—C1—C2	-175.2 (4)	C1B—C2B—C3B—C4B	-2.7 (11)
N1—C1—C2—C3	1.2 (9)	C2B—C3B—C4B—C5B	-0.9 (11)
C1—C2—C3—C4	-0.8 (9)	C1B—N1B—C5B—C4B	-3.2 (6)
C2—C3—C4—C5	0.6 (8)	Cu—N1B—C5B—C4B	168.1 (4)
C1—N1—C5—C4	1.4 (6)	C1B—N1B—C5B—C6B	173.7 (4)
Cu—N1—C5—C4	175.7 (3)	Cu—N1B—C5B—C6B	-15.0 (5)
C1—N1—C5—C6	-178.1 (5)	C3B—C4B—C5B—N1B	3.9 (8)
Cu—N1—C5—C6	-3.7 (5)	C3B—C4B—C5B—C6B	-172.9 (6)
C3—C4—C5—N1	-0.9 (7)	C6A—N—C6B—C5B	99.2 (5)
C3—C4—C5—C6	178.5 (5)	Cu—N—C6B—C5B	-16.7 (5)
Cu—N2—C6—C5	13.8 (6)	N1B—C5B—C6B—N	22.1 (6)
N1-C5-C6-N2	-6.8 (7)	C4B—C5B—C6B—N	-161.0 (4)
C4—C5—C6—N2	173.8 (4)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N2—H2B···O12A	0.90	2.21	3.080 (17)	161
N2—H2B…O13	0.90	2.27	3.103 (12)	154
N2—H2C···O24	0.90	2.22	3.064 (9)	157
N2—H2C···O22A	0.90	2.27	3.158 (19)	169
N2—H2C…O21	0.90	2.64	3.374 (17)	139
N—H0A···O12 ⁱ	0.91	2.44	3.301 (10)	158
N—H0A…O11A ⁱ	0.91	2.40	3.291 (19)	165
C3—H3A···O23 ⁱⁱ	0.93	2.54	3.456 (10)	169
C4—H4A···O12 ⁱⁱⁱ	0.93	2.45	3.374 (10)	172
C1A—H1AA…O14A	0.93	2.57	3.438 (18)	156
C2A—H2AA···O22 ^{iv}	0.93	2.56	3.475 (13)	167
C2A—H2AA···O22A ^{iv}	0.93	2.46	3.199 (14)	136

C6A—H6AB···O22 ^v	0.97	2.35	3.294 (10)	164
C11B—H11B···O14A	0.96	2.32	3.180 (12)	148
C6B—H6BA···O22 ^v	0.97	2.53	3.433 (10)	154
C6B—H6BA···O23A ^v	0.97	2.47	3.433 (17)	172
C6B—H6BB···O23 ^{vi}	0.97	2.54	3.375 (10)	144

Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+2, -z; (v) -x+2, -y+2, -z; (vi) x+1/2, -y+3/2, z+1/2.

Fig. 2